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ABSTRACT: A novel luminescent cyclometalated iridium(III)
complex-based chemosensor (1) bearing a zinc-specific
receptor, tris(2-pyridylmethyl)amine, and the 3-phenyl-1H-
pyrazole ligand has been designed and synthesized. Upon the
addition of Zn2+ ions to a solution of iridium(III) complex 1,
a pronounced luminescence color change from blue to green
can be observed, which may be attributed to the suppression of
photoinduced electron transfer upon complexation of complex
1 with Zn2+ ions. The interaction of iridium(III) complex 1 with Zn2+ ions was investigated by UV−vis absorption titration,
emission titration, and 1H NMR titration. Furthermore, the iridium(III) complex 1 exhibited good selectivity for Zn2+ over
13 other common metal ions, including K+, Ag+, Na+, Ni2+, Fe3+, Hg2+, Cd2+, Mg2+, Ca2+, Cu2+, Mn2+, Co2+, and Pb2+ ions.
The practical application of the iridium(III) complex 1 in visualizing intracellular Zn2+ distribution in live zebrafish was also
demonstrated.
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1. INTRODUCTION

Zinc ions are involved in important physiological functions in
living organisms, such as neurotransmission, gene transcrip-
tion, and immune function.1 Zinc deficiency is associated with a
number of human diseases, including major depressive disorder,
developmental defects, chronic liver disease, chronic renal
disease, sickle cell disease, and diabetes.2−4 On the other hand,
the elevated consumption of zinc has been implicated in ataxia,
lethargy, and copper deficiency.5,6 Therefore, the accurate
detection and imaging of zinc ions is in high demand for the
investigation of the regulation of zinc levels and the occurrence of
disease states.
A range of detection methods for zinc ion have been devel-

oped, including atomic absorption spectrometry7 and inductively
coupled plasma mass spectrometry.8 However, these methods
may be time-consuming and/or require the use of sophisticated
instrumentation. The notable advantages of luminescence
detection have stimulated the development of a variety of fluo-
rescent chemosensors for zinc ions.9,10 For example, probes
based on zinc-specific receptors conjugated to fluorescent chro-
mophores such as cyanine,11 fluorescein,12−23 coumarin,24−27

4-nitrobenzoxadiazole,28−30 quinolone,31−35 benzoresorufin,36

1,8-naphthyridine,37 methylazacalix[a]pyridine,38 tetraphenyl-
ethylene,39 and rhodamine40−42 have been reported for Zn2+

detection. Some of these fluorescent probes have been used to

monitor Zn2+ in mitochondria of living cells or in the
hippocampus slide.43,44 However, the use of organic fluoro-
phores in sensingmay be limited by their small Stokes shift values
and fluorescence lifetimes, as well as autofluorescence arising in
biological samples.
In this context, transition-metal complexes with metal-to-

ligand charge transfer (MLCT) excited states have arisen as
viable alternatives to organic fluorophores and have been widely
employed for optoelectronic devices, cellular imaging, and
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Figure 1. Chemical structure of cyclometalated iridium(III) complex 1.
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chemosensing and as structural probes for biomolecules.45−84

The long phosphorescence lifetime of luminescent metal
complexes in the visible region offers a means to eliminate
background fluorescence by the use of time-resolved lumines-
cence spectroscopy. A few luminescent iridium(III) complexes
have been developed for Zn2+ detection, such as the cyclo-
metalated complexes containing the zinc-specific di-2-picolyl-
amine (DPA) receptor as reported by the groups of Lippard,
Nam, You, and Lo.85−88 We herein report the application of a
novel luminescent cyclometalated iridium(III) complex contain-
ing the Zn2+ receptor tris(2-pyridylmethyl)amine (TPA) and
the 3-phenyl-1H-pyrazole (C∧N) ligand for Zn2+ ion imaging
(Figure 1). Furthermore, the iridium(III) complex 1 was
demonstrated to function as a selective luminescent probe for
visualizing intracellular Zn2+ distribution in live zebrafish.

2. EXPERIMENTAL SECTION
2.1. Materials. Reagents, unless specified, were purchased from

Sigma-Aldrich (St. Louis, MO) and used as received. Iridium chloride
hydrate (IrCl3·xH2O) was purchased from Precious Metals Online
(Australia).
2.2. Synthesis of Complex 1. The precursor iridium(III) dimer

complex Ir2(C
∧N)4Cl2 (where C∧N = 3-phenyl-1H-pyrazole) was

prepared according to modified literature methods.89 A suspension of
Ir2(C

∧N)4Cl2 (0.2 mmol) and N
∧N ligand L1 (0.44 mmol) in a mixture

of DCM/methanol (1:1, 20 mL) was refluxed overnight under a
nitrogen atmosphere. The resulting solution was then allowed to cool to
room temperature and filtered to remove unreacted cyclometalated
dimer. To the filtrate was added an aqueous solution of ammonium
hexafluorophosphate (excess), and the filtrate was reduced in volume by
rotary evaporation until precipitation of the crude product occurred.
The precipiate was then filtered and washed with several portions of
water (2 × 50 mL) followed by diethyl ether (2 × 50 mL). The product
was recrystallized by acetonitrile/diethyl ether vapor diffusion to yield
the title compound.
Data for L1: yield 35%; 1H NMR (400 MHz, DMSO) δ 9.00 (dd,

J = 4.2, 1.6 Hz, 2H), 8.76−8.56 (m, 4H), 8.50 (ddd, J = 4.8, 1.7, 0.9
Hz,4H), 7.99 (dd, J = 8.2, 1.6 Hz, 4H), 7.80−7.72 (m, 2H), 7.76−7.58
(m, 1H), 7.56−7.37 (m, 2H), 7.30 (ddd, J = 7.6, 4.8, 1.1 Hz, 6H), 6.81 (s,
2H), 4.72 (s, 1H); 13C NMR (100 MHz, DMSO) δ 158.93, 149.47,
149.03, 148.42, 145.12, 141.35, 136.77, 136.52, 133.21, 130.33, 130.12,
123.29, 122.32, 122.15, 121.85, 120.94, 120.08, 57.90, 54.96; MALDI-
TOF-HRMS m/z calcd 483.2171, found 484.2260.
Data for complex 1: yield 35%; 1H NMR (400 MHz, DMSO) δ 9.15

(dd, J = 4.2, 1.4 Hz, 4H), 9.07 (dd, J = 4.3, 1.6 Hz, 4H), 8.73−8.66 (m,
4H), 8.63−8.56 (m, 16H), 8.52 (dd, J = 8.1, 1.4 Hz, 4H), 8.30 (d, J = 5.4
Hz, 3H), 8.26 (s, 3H), 8.16 (s, 1H), 8.06 (d, J = 5.4 Hz, 3H), 8.00 (t, J =
6.1 Hz, 8H), 7.88−7.84 (m, 3H), 7.80 (dddd, J = 8.1, 6.2, 4.0, 2.2 Hz,
12H), 7.72−7.60 (m, 17H), 7.40 (ddd, J = 7.6, 4.3, 1.4 Hz, 17H), 7.27 (t,
J = 7.6 Hz, 3H), 7.03 (td, J = 6.2, 2.6 Hz, 3H), 6.95 (t, J = 7.6 Hz, 3H),
4.41 (s, 3H), 3.46 (s, 4H); 13C NMR (100 MHz, DMSO) δ 164.49,
159.52, 153.31, 151.00, 150.96, 149.10, 147.59, 147.29, 143.53, 136.00,
133.74, 129.17, 127.94, 124.10, 123.38, 123.14, 122.74, 121.49, 119.66,

118.64, 117.43, 108.13, 104.95, 98.06, 44.14, 42.52, 36.48, 30.97;
MALDI-TOF-HRMS m/z calcd 966.3332, found 966.1658.

Scheme 1. Synthetic Pathway of Iridium(III) Complex 1a

aReagents and conditions: (a) picolyl chloride, CH3CN, K2CO3, N2, reflux, 56.5%; (b) DCM/methanol, reflux.

Figure 2. (a) Luminescence spectra of 1 (1 μM) upon addition of
various concentrations of Zn2+ ions (0−2 μM) in Tris-buffered solution
(25 mM, pH 7.04). (b) Relationship between the luminescence
intensity and Zn2+ concentration. Inset: luminescence response of 1 at
I495nm/I435nm vs [Zn2+]. λex = 320 nm.

Figure 3. Photograph image of complex 1 (1 μM) in Tris buffer
(25 mM, pH 7.04) in the (left) absence or (right) presence of 1 μMZn2+

under UV illumination.
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2.3. Zinc Ion Imaging in Zebrafish. Three day old zebrafish were
fed with a solution containing 200 μM Zn2+ solution or with a control
solution at 28.5 °C for 1.5 h. The zebrafish were washed with PBS solution
three times and were incubated with a solution of 40 μM iridium(III)
complex 1 at 28.5 °C for 1 h. Alternatively, Zn2+-fed zebrafish were rinsed
three timeswith PBS and then incubatedwith 50μMN,N,N′,N′-tetrakis(2-
pyridylmethyl)ethylenediamine (TPEN) solution, followed by further
rinsing three times with PBS and incubation with 40 μM iridium(III)
complex 1 at 28.5 °C for 1 h. Confocal imaging of zebrafish was performed
using a research inverted microscope system (Olympus IX73).

3. RESULTS AND DISCUSSION

3.1. Design and Synthesis of the Iridium(III) Complex.
The iridium(III) complex 1 was designed to bear a N∧N ligand
(L1) incorporating the Zn2+ receptor TPA,90 in addition to two
C∧N ligands. The coordination of L1 to Zn2+ should influence
the MLCT state of the complexes, resulting in observable ab-
sorption and emission spectral changes of the complex in the
presence of Zn2+. Furthermore, the luminescence of the
iridium(III) complex is known to be highly sensitive to the

nature of the ligands. The iridium(III) complex 1 was prepared
according to modified literature procedures (Scheme 1).89,90

3.2. Photophysical Response of Complex 1 to Zn2+.
Complex 1 was titrated with different concentrations of Zn2+ in
Tris buffer (25 mM, pH 7.04). Interestingly, the luminescence
of 1 was significantly enhanced in the presence of increasing
concentrations of Zn2+ ions, which was accompanied by a
substantial red shift (Δλ = ca. 60 nm) in the emission maxima of
1 (Figure 2a). This luminescence enhancement is presumably
due to the suppression of photoinduced electron transfer upon
complexation of complex 1 with Zn2+. A ratiometric (I495nm/
I435nm) luminescence enhancement of ca. 6-fold was observed at
2 μM Zn2+ ions. Furthermore, a linear relationship was observed
between the ratiometric enhancement of complex 1 and the
Zn2+ concentration (R2 = 0.984) in the range of 0−1 μM Zn2+

(Figure 2b). The detection limit at a signal-to-noise ratio of 3 was
found to be 36 nM. Furthermore, the presence of Zn2+ could
be readily observed by the naked eye under UV illumination
(Figure 3). In the UV−vis spectrum, the addition of Zn2+ to
complex 1 led to an increase in absorption at 261 and 298 nm and
a decrease in absorption at 281 nm (Figure S1, Supporting
Information). Additionally, Job’s plot analysis of the lumines-
cence data revealed a maximum in emission enhancement at a
0.5 mole fraction of 1, indicating a 1:1 stoichiometry between
Zn2+ ions and 1 (Figure S2, Supporting Information).

3.3. Theoretical Studies. Ir(III) complexes are known to
possess rich electronic excited states. Time-dependent density
functional theory (TD-DFT) calculations have been performed
on complex 1 and a hypothetical Zn2+-coordinated complex
1−Zn to investigate the nature of the excited states. The
optimized ground-state structures for 1 and 1−Zn are depicted in
Figure 4; their simulation spectra are depicted in Figure S3
(Supporting Information). Because the nature of the transitions
in the spectral region of 300−600 nm are quite complex for both
complexes, only the major transitions with oscillator strength
>0.04 are presented inFigure S3. For complex1, the calculated lowest
energy absorption bands at around 425 nm are attributed to a mix-
ing of n(amine)→ π*(phen) and dπ(Ir)→ π*(phen) charge transfer
transitions (transitions I and II in Figure S4, Supporting Information).

Figure 5. 1H NMR spectra of L1 (5 mM) in the (upper) absence and (lower) presence of ZnCl2 (5 mM) in DMSO-d6 at 298 K.

Figure 4. DFT-optimized ground-state structures for 1 and 1−Zn.
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For hypothetical complex 1−Zn, the calculated lowest energy absorp-
tion band at around 475 nm is attributed to the dπ(Ir)→ π*(phen)
charge transfer transition (transition I in Figure S5, Supporting
Information). The calculated red shift upon Zn2+ coordination to
1 is consistent with the experimental finding that a red shift in
emission energy is induced upon Zn2+ binding to 1.
3.4. 1H NMR Titration. To investigate the complexa-

tion mode of Zn2+ ions, 1H NMR titration of L1 with Zn2+ in
DMSO-d6 was performed. The results showed several significant
spectral changes in the 1H NMR spectrum of L1 upon the
addition of Zn2+ ions (c, from 7.98 to 8.41 ppm; d, from 7.72 to
8.19 ppm; e, from 7.46 to 7.82 ppm; f, from 7.13 to 7.64 ppm; g,
from 6.94 to 7.17 ppm; h, from 6.63 to 6.90 ppm; i, from 6.17 to
6.65 ppm; k, from 3.31 to 3.72 ppm) (Figure 5). The spectral
changes suggest that Zn2+ ions putatively bind to L1 via
coordination to the nitrogen atoms of the pyridine groups.
3.5. Selectivity of Iridium(III) Complex 1 for Zn2+. We

next evaluated the selectivity of the iridium(III) complex 1

for Zn2+ by investigating its luminescence response to 13 other
common metal ions, including Na+, K+, Ag+, Ni2+, Fe3+, Hg2+,
Cd2+, Mg2+, Ca2+, Cu2+, Mn2+, Co2+, and Pb2+ ions. The results
showed that only Zn2+ ions could significantly enhance the
ratiometric luminescence output of complex 1 (Figure 6). By
comparison, only minor changes in I495nm/I435nm were observed
upon the addition of a 20-fold excess of the Ag+, Ni2+, Fe3+, Hg2+,
Cd2+, Mg2+, Ca2+, Cu2+, Mn2+, Co2+, and Pb2+ ions. Moreover,
complex 1 displayed significant selectivity for Zn2+ ions over a
1000-fold excess of Na+ and K+ ions. These results indicate that
the iridium(III) complex 1 displays significant selectivity for Zn2+

ions over the other metal ions, which originates presumably from
the specific interaction of the TPA moiety of complex 1 with
Zn2+ ions. Additionally, we have investigated the impact of the
coaddition of Cu2+ ions on the performance of the assay for Zn2+

detection. The results showed that addition of 0.2 or 0.4 μMCu2+

into a 1 μMZn2+ solutionwould result in a 24% or 33%decrease in
the luminescence of complex 1, respectively (Figure S6,
Supporting Information).

3.6. Zn2+ Imaging in Zebrafish. The lifetime of complex 1
was determined to be 4.38 μs (λ = 495 nm), which could make it
suitable for Zn2+ imaging in biological tissues. Taking advantage
of the ratiometric behavior and high sensitivity of complex 1
toward Zn2+ ions, the practical application of complex 1 as a
luminescent probe to monitor Zn2+ distribution in live zebrafish
was investigated. Ratiometric imaging revealed a bright green
fluorescence in the abdomen of 3 day old zebrafish fed with Zn2+,
indicating an accumulation of Zn2+ ions in the abdomen, while
non-Zn2+-treated zebrafish appeared blue (Figure 7). Compar-
ison of the luminescence images obtained for zebrafish fed with
different concentrations of zinc ions (0, 20 nM, 200 nM, 2 μM,
20 μM, and 200 μM) suggested that down to 200 nM Zn2+ ions

Figure 7. Zn2+ imaging in 3 day old zebrafish. Bright-field (upper) and luminescence (lower) images of zebrafish fed with different concentrations of
Zn2+ (0, 20 nM, 200 nM, 2 μM, 20 μM, and 200 μM) for 1.5 h followed by incubation with complex 1 (40 μM) for 1 h.

Figure 6. Selectivity of complex 1 for Zn2+. The concentration of Zn2+

ions was 1.0 μM, the concentrations of Na+ and K+ were 1000 μM, and
the concentrations of the other metal ions were 20.0 μM.
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could be detected in live zebrafish (Figure 7). A time-course
experiment revealed that the green fluorescence intensity of
treated zebrafish increased with the Zn2+ incubation time (0, 30,
60, and 90 min) (Figure S7, Supporting Information).
Additionally, the green fluorescence in Zn2+-treated zebrafish
was reduced to an almost undetectable level if the chelator TPEN
was also present (Figure 8), suggesting that the green emission

observed in Figure 7 arose from the complexation of complex 1
with Zn2+. These results indicate that complex 1 can be used as a
luminescent imaging agent for Zn2+ ions in live zebrafish.

4. CONCLUSION
In summary, we have synthesized a novel luminescent cyclo-
metalated iridium(III) complex containing the zinc-binding TPA
group. Complex 1 displayed pronounced luminescence changes
upon the addition of Zn2+ in aqueous solution and showed good
sensitivity and selectivity for Zn2+ over 13 other metal ions,
including K+, Ag+, Na+, Ni2+, Fe3+, Hg2+, Cd2+, Mg2+, Ca2+, Cu2+,
Mn2+, Co2+, and Pb2+ ions. Compared to other organic zinc ion
chemosensors, which typically require an organic solvent for
detection, our developed iridium(III) complex-based Zn2+

chemosensor could be used in aqueous buffer and exhibits a higher
selectivity against Cd2+ ions than that of some other reported Zn2+

ion chemosensors. A comparison of recently reported chemo-
sensors for Zn2+ ion is presented in Table 1. Furthermore, the

practical application of complex 1 for imaging Zn2+ ions in live
zebrafish was successfully demonstrated. We envision that the
iridium(III) complex could be further developed as a useful probe
for monitoring zinc ion distribution in biological samples.
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